Phase Structure and Properties of Poly(ethylene terephthalate)/High-Density Polyethylene Based on Recycled Materials

نویسندگان

  • Yong Lei
  • Qinglin Wu
  • Craig M. Clemons
  • Weihong Guo
چکیده

Blends based on recycled high density polyethylene (R-HDPE) and recycled poly(ethylene terephthalate) (R-PET) were made through reactive extrusion. The effects of maleated polyethylene (PE-g-MA), triblock copolymer of styrene and ethylene/butylene (SEBS), and 4,40-methylenedi(phenyl isocyanate) (MDI) on blend properties were studied. The 2% PE-g-MA improved the compatibility of R-HDPE and R-PET in all blends toughened by SEBS. For the R-HDPE/R-PET (70/30 w/w) blend toughened by SEBS, the dispersed PET domain size was significantly reduced with use of 2% PE-g-MA, and the impact strength of the resultant blend doubled. For blends with R-PET matrix, all strengths were improved by adding MDI through extending the PET molecular chains. The crystalline behaviors of R-HDPE and R-PET in one-phase rich systems influenced each other. The addition of PE-gMA and SEBS consistently reduced the crystalline level (vc) of either the R-PET or the R-HDPE phase and lowered the crystallization peak temperature (Tc) of R-PET. Further addition of MDI did not influence R-HDPE crystallization behavior but lowered the vc of R-PET in R-PET rich blends. The thermal stability of R-HDPE/R-PET 70/30 and 50/50 (w/w) blends were improved by chain-extension when 0.5% MDI was added. VC 2009 Wiley Periodicals, Inc. J Appl Polym Sci 113: 1710–1719, 2009

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphology and properties of microfibrillar composites based on recycled poly (ethylene terephthalate) and high density polyethylene

Microfibrillar composites (MFCs) from recycled high density polyethylene (R-HDPE)/recycled poly (ethylene terephthalate) (R-PET) (75/25 w/w) were made through reactive extrusion and post-extrusion strand stretching. The resultant MFCs could be processed at HDPE processing temperature. The compatibility between microfibers and R-HDPE matrix was improved through compatibilizers. Of the three comp...

متن کامل

Wood plastic composites based on microfibrillar blends of high density polyethylene/poly(ethylene terephthalate).

High-melting-temperature poly(ethylene terephthalate) (PET) was successfully introduced into wood plastic composites through a two-step reactive extrusion technology. Wood flour was added into pre-prepared PET/high density polyethylene (HDPE) microfibrillar blends (MFBs) in the second extrusion at the temperature for processing HDPE. Addition of 25% in situ formed PET microfibers obviously incr...

متن کامل

Rheological properties of modified Bitumen: Comparison of waste polymers’ performance

In this investigation, rheological properties of three different polymer-modified bitumen compounds containing recycled polyethylene terephthalate (R-PET), crumb rubber (CR) and poly (styrene-butadiene-styrene) (SBS) are evaluated and compared. The modified samples were tested by a dynamic shear rheometer (DSR) where complex modulus (G*), phase angle (δ) and rutting resistance (G*/Sinδ) of spec...

متن کامل

Migration Assessment and Modeling from Poly Ethylene Terephthalate (PET) Packaging Containers into Soft Drinks

Background & objectives: Polyethylene terephthalate (PET) containers have many applications in the food industry. Although there are numerous advantages for PET it also has some disadvantages, one of which is the migration of materials from the container into the material inside. In this study, the effect of two factors of storage time and temperature on the migration rate was evaluated and mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009